本文目录:
可控硅电加热器工作原理
最佳答案:
可控硅电加热器的工作原理主要基于可控硅的导通和关断特性,通过控制可控硅的导通角来实现对加热器功率的精确控制,进而调节加热温度。具体过程:
1. 电路组成
- 可控硅元件:作为核心控制器件,实现对加热器电流的控制。
- 触发电路:为可控硅提供触发信号,使其导通或关断。触发信号可以是电压信号、电流信号或光信号等。
- 控制电路:产生相应的控制信号,驱动触发电路工作。
- 温度传感器:用于检测加热器的实际温度,并将温度信号转换为电信号传输给控制电路。
- 加热器:将电能转化为热能,实现加热过程。
2. 工作过程
- 初始状态:可控硅处于截止状态,加热器不工作,无电流通过。
- 触发导通:当控制电路检测到加热器的实际温度低于设定温度时,产生触发信号并作用于可控硅的控制极。触发信号的幅值必须达到或超过可控硅的触发电平,才能使可控硅导通。一旦可控硅导通,加热器开始工作,电流通过加热器产生热量。
- 功率调节:通过改变触发信号的相位(即触发角),可以控制可控硅在每个交流电周期内的导通时间,从而调节通过加热器的电流大小和功率输出。触发角越大,可控硅导通时间越短,加热器功率越小;反之,触发角越小,可控硅导通时间越长,加热器功率越大。通过这种方式,可以实现对加热器功率的精确控制,进而调节加热温度。
- 维持与关断:在可控硅导通期间,加热器持续工作并产生热量。当加热器的实际温度达到或超过设定温度时,控制电路将停止产生触发信号,可控硅因失去触发而自动关断,加热器停止工作。在交流电路中,随着交流电压的周期性变化,可控硅将在每个半周内的特定时间段内导通和截止,形成脉冲式加热过程。
通过上述过程,可控硅电加热器能够实现高效、稳定的加热效果。
可控硅在自动控制控制,机电领域,工业电气及家电等方面都有广泛的应用。可控硅是一种有源开关元件,平时它保持在非道通状态,直到由一个较少的控制信号对其触发或称“点火”使其道通,一旦被点火就算撤离触发信号它也保持道通状态,要使其截止可在其阳极与阴极间加上反向电压或将流过可控硅二极管的电流减少到某一个值以下。 可控硅二极管可用两个不同极性(p-n-p和n-p-n)晶体管来模拟,如图g1所示。当可控硅的栅极悬空时,bg1和bg2都处于截止状态,此时电路基本上没有电流流过负载电阻rl,当栅极输入一个正脉冲电压时bg2道通,使bg1的基极电位下降,bg1因此开始道通,bg1的道通使得bg2的基极电位进一步升高,bg1的基极电位进一步下降,经过这一个正反馈过程使bg1和bg2进入饱和道通状态。电路很快从截止状态进入道通状态,这时栅极就算没有触发脉冲电路由于正反馈的作用将保持道通状态不变。如果此时在阳极和阴极加上反向电压,由于bg1和bg2均处于反向偏置状态所以电路很快截止,另外如果加大负载电阻rl的阻值使电路电流减少bg1和bg2的基电流也将减少,当减少到某一个值时由于电路的正反馈作用,电路将很快从道通状态翻转为截止状态,我们称这个电流为维持电流。在实际应用中,我们可通过一个开关来短路可控硅的阳极和阴极从而达到可控硅的关断。
可控硅在自动控制控制,机电领域,工业电气及家电等方面都有广泛的应用。可控硅是一种有源开关元件,平时它保持在非道通状态,直到由一个较少的控制信号对其触发或称“点火”使其道通,一旦被点火就算撤离触发信号它也保持道通状态,要使其截止可在其阳极与阴极间加上反向电压或将流过可控硅二极管的电流减少到某一个值以下。 可控硅二极管可用两个不同极性(p-n-p和n-p-n)晶体管来模拟,如图g1所示。当可控硅的栅极悬空时,bg1和bg2都处于截止状态,此时电路基本上没有电流流过负载电阻rl,当栅极输入一个正脉冲电压时bg2道通,使bg1的基极电位下降,bg1因此开始道通,bg1的道通使得bg2的基极电位进一步升高,bg1的基极电位进一步下降,经过这一个正反馈过程使bg1和bg2进入饱和道通状态。电路很快从截止状态进入道通状态,这时栅极就算没有触发脉冲电路由于正反馈的作用将保持道通状态不变。如果此时在阳极和阴极加上反向电压,由于bg1和bg2均处于反向偏置状态所以电路很快截止,另外如果加大负载电阻rl的阻值使电路电流减少bg1和bg2的基电流也将减少,当减少到某一个值时由于电路的正反馈作用,电路将很快从道通状态翻转为截止状态,我们称这个电流为维持电流。在实际应用中,我们可通过一个开关来短路可控硅的阳极和阴极从而达到可控硅的关断。